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A fundamental problem for Bayesian mixture model analysis is label switching, which occurs as a result of the nonidentifiability of the

mixture components under symmetric priors. We propose two labeling methods to solve this problem. The first method, denoted by

PM(ALG), is based on the posterior modes and an ascending algorithm generically denoted ALG. We use each Markov chain Monte Carlo

sample as the starting point in an ascending algorithm, and label the sample based on the mode of the posterior to which it converges. Our

natural assumption here is that the samples converged to the same mode should have the same labels. The PM(ALG) labeling method has

some computational advantages over other popular labeling methods. Additionally, it automatically matches the ‘‘ideal’’ labels in the

highest posterior density credible regions. The second method does labeling by maximizing the normal likelihood of the labeled Gibbs

samples. Using a Monte Carlo simulation study and a real dataset, we demonstrate the success of our new methods in dealing with the label

switching problem.
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1. INTRODUCTION

The m-component mixture models we consider here have
densities of the form

pðx; uÞ ¼ p1 f ðx; l1Þ þ p2 f ðx; l2Þ þ � � � þ pm f ðx; lmÞ;
where u ¼ (p1, . . . , pm, l1, . . . , lm)T, f (�) is the density of a
discrete or continuous random vector called the ‘‘component
density,’’ lj is the component specific parameter, which can be
scalar or vector, and pj is the proportion of jth subpopulation in
the whole population with Sm

j¼1pj ¼ 1: For a general intro-
duction to mixture models, see Lindsay (1995), Böhning
(1999), McLachlan and Peel (2000), and Mengersen (2009).

For any permutation s ¼ (s(1), . . . , s(m)) of the identity
permutation (1, . . . , m), define the corresponding permutation
of the parameter vector u by

us ¼ ðpsð1Þ; . . . ;psðmÞ;lsð1Þ; . . . ; lsðmÞÞT :

Supposing that x ¼ (x1, . . . , xn) is a random sample from the
m-component mixture density, the likelihood for x is

Lðu; xÞ ¼
Yn

i¼1

fp1 f ðxi; l1Þ þ p2 f ðxi; l2Þ

þ � � � þ pmf ðxi; lmÞg: ð1Þ
For any permutation s, L(us ; x) will be numerically the same
as L(u ; x). Hence, if û is the maximum likelihood estimator
(MLE), û

s
is the MLE for any permutation s. In a technical

sense, this means that the subscripts we assign to the p’s and
l’s are not identifiable unless we put additional restrictions on
the model. This is the so-called ‘‘label switching’’ problem.

The label switching problem also occurs in Bayesian mix-
tures. Bayesian mixture analysis requires a prior distribution
p(u) for the parameters of the mixture model. If we do not have
prior information that distinguishes between the components of
a mixture model (i.e., p(u) ¼ p(us)) for any permutation s,
the posterior distribution will be similarly symmetric and thus

invariant to all the permutations of the component parameters,
and the marginal posterior distributions for the parameters will
also be identical for each mixture component. It is then
meaningless to draw inference, relating to individual compo-
nents, directly from Markov chain Monte Carlo (MCMC) sam-
ples using ergodic averaging before solving the label switching
problem. For the illustrative examples of label switching, see
Stephens (2000) and Jasra, Holmes, and Stephens (2005),
among others.

Many methods have been proposed to deal with the labeling
problem in Bayesian analysis. The easiest way to solve the
label switching is to use an explicit parameter constraint so that
only one permutation can satisfy it. This method was initially
used by Diebolt and Robert (1994), Dellaportas et al. (1996),
and Richardson and Green (1997). However, Celeux (1997);
Celeux, Hurn, and Robert (2000); and Stephens (1997a, b,
2000) have all expressed their concerns about imposing an
identifiability constraint. Another popular labeling method is to
use a relabeling algorithm (Celeux 1998; Stephens 2000) that is
designed to minimize a selected Monte Carlo risk. Stephens
(2000) suggested a particular choice of loss function based on
the Kullback-Liebler (KL) divergence. We will refer to this
particular relabeling algorithm as the ‘‘KL algorithm.’’ Such
risk-based relabeling algorithms have two liabilities: They give
results that can depend on the choice of starting labels and they
require one to compare m! permutations in each iteration. In
addition, relabeling algorithms require batch processing, which
can be computationally demanding on storage. Celeux (1998)
and Stephens (2000) did provide some alternative online ver-
sions, designed to reduce the storage requirements.

There are many other labeling methods in the literature. See,
for example, Celeux et al. (2000); Frühwirth-Schnatter (2001);
Hurn, Justel, and Robert (2003); Chung, Loken, and Schafer
(2004); and Marin, Mengersen, and Robert (2005). Jasra,
Holmes, and Stephens (2005) provided a good review about the
existing methods to solve the label switching problem in
Bayesian mixture modeling.
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generically denoted ALG. In our examples we will use the
ECM (Meng and Rubin 1993) as the ascending algorithm. The
samples are then relabeled according to the posterior modes to
which they converge. We will show that the PM(ALG) method
is superior to other existing proposals in capturing the credible
regions of highest posterior density (HPD). We will also show
by example that it is computationally much faster than many
other existing proposals when the number of components is
larger. In addition, PM(ALG) is an online algorithm, which can
reduce the storage requirements. Furthermore, risk-based
labeling methods have results that can depend on the choice of
the initial labels for the samples. The PM(ALG) method does
not require the initial labels, which can save considerable
computation time.

The structure of the article is as follows. Section 2 introduces
our new labeling methods. In Section 3, we use two simulation
examples and a real dataset to compare the new labeling
methods with two popular existing methods. We summarize
our proposed labeling methods and discuss some future
research work in Section 4.

2. INTRODUCTION OF NEW LABELING METHODS

Given a smooth objective function, such as the posterior
density p(u), one can cluster points in u space by using an
ascent algorithm (ALG) that monotonically increases the
objective function. Each point u is then assigned to the critical
point to which the algorithm converges when u is used as an
initial value. Although there is the possibility of converging to a
saddle point, in a typical posterior, the posterior modes will be
the points of attraction for almost all starting values for the
ascent algorithm, and so we are creating ‘‘modal clusters.’’ See
Li, Ray, and Lindsay (2007) for the use of this idea in density-
based clustering.

2.1 Labeling Using Modal Clusters

The mixture labeling problem can be viewed as a clustering
problem with a special structure. If we let the dataset be all the
MCMC samples u together with all their possible permutations
us, then the objective is to find m! tight clusters, each con-
taining exactly one permutation of each sample element u. One
can then choose any one of these tight clusters to be the newly
labeled dataset.

This relates to modal clustering as follows. If ~u is a mode, then
so is ~u

s
for any permutation s. If the chosen algorithm ascends

from u to ~u
s
;we will say u has the same labeling as ~u

s
: If the

algorithm is permutation symmetric, we will also know that us�1

;
wheres�1 is the inversepermutation ofs such that ðusÞs

�1

¼ u for
any u and s, will be given the same labeling as ~u:

If the posterior density has a maximal mode at ~u it also has
modes at all permutations of ~u and they are all maximal. We
can pick one such mode to be our reference mode (hence, the
reference label)—say, by order constraint (OC) labeling on
some parameter. Denote by û the chosen reference maximal
mode. If a sampled u converges to a maximal mode—say,
û

s
—then the natural label of u is s�1 because us�1

would
ascend to û: If the u converges to a minor mode—say, u*—we
could create a labeling system for all the samples u that are

attracted to u* (or its permutations) by creating a secondary
reference mode û2: If the reference mode û2 was chosen so that
it matched the label with the major mode û using a risk-based
criterion that makes û2 ¼ us

� most similar to û for some s, then
we have a system that labels all points attracted to both the
maximal and minor modes. One can extend this idea to any
number of minor modes.

If one wishes to use this algorithm in a way that does not
require storage of all the MCMC samples, one needs to find the
reference maximal mode û in advance of processing.
Ascending algorithms are guaranteed only to find local modes,
not global ones. To find one of the m! maximal modes, we need
to start from different initial values and choose the converged
mode that has the largest posterior. Practically, the initial values
can be chosen equally spaced from the burn-in samples of the
MCMC sampling, such as choosing one from every 1,000 (or
more) burn-in samples. If one uses a burn-in of length 10,000 to
20,000, then, based on our experience, the resulting 10 to 20
initial values will have every good chances of finding the
maximal mode. (Suppose that the maximal mode garners 50%
of the samples in posterior probability. If one were to take
independent samples, then the chance it does not show up in 20
trials is about 0.000001 in probability.) If the MLE is not dif-
ficult to find, we can also include it as one of the initial values.
(Although it is possible that one will find a higher mode later in
the sampling, it is unlikely to attract many of the samples, and
so it might not be a wise choice to be the mode of reference.)
Using this strategy, we successfully found all the maximal
modes in the examples in Section 3. As an additional pre-
caution, a general global search optimization technique, such
as genetic algorithms (Holland 1975; Goldberg 1989; Davis
1991) and adaptive simulated annealing (Corana, Marchesi,
Martini, and Ridella 1987; Ingber and Rosen 1992), can also be
used to find the maximal mode. For an off-line version of our
algorithm, one could also find the maximal mode at the end of
the sampling. In our experience, the maximal mode is the
one to which most of the samples converge when each
MCMC sample is used as the starting value for the ascending
algorithm.

Take the previously found reference maximal mode û and its
associated minor modes as the reference modes (hence, the
reference labels). The aim of labeling is to find the labels (s1,
. . . , sN) such that fus1

1 ; . . . ; usN
N g have the same label meaning

as û: Roughly speaking, this means that we would like this
labeling to create a tight cluster around û: The algorithm of our
proposed labeling method is as follows.

Algorithm 1: Labeling Based on Posterior Modes and an
Ascent Algorithm (PM(ALG))

Step 1. Taking each MCMC sample {ut, t¼ 1, . . . , N} as the
initial value, find the corresponding converged mode {mt,
t ¼ 1, . . . , N} using the given ascent algorithm ALG.
Step 2. Apply to mt the OC labeling used to define û; denoted
by s�t (hence, m

s�t
t has the same OC as û) and find the label

st of ut based on the following situations:
(a) If m

s�t
t is û; up to numerical error, then st ¼ s�t :

(b) If m
s�t
t is not û; but it is equivalent (up to a permuta-

tion) to a known reference minor mode—say, û2—assign
the label st such that mst

t ¼ û2:
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(c) If m
s�t
t is not û and is not equivalent to a preexisting

reference minor mode, create a new reference minor
mode mst

t ; where st is based on a risk-based criterion
such as least squares:

st ¼ arg min
s
ðms

t � ûÞTðms
t � ûÞ : ð2Þ

j

The main idea of PM(ALG) is to explore the geometry of the
mixture posterior by using each MCMC draw as a starting point
for the ascent algorithm ALG and labeling the samples based
on the modes of the posterior density to which they converge.
The natural assumption here is that the samples converged to
the same mode should have the same labels.

2.2 The ECM Algorithm

The EM class of algorithms provides a natural ascent
methodology for clustering because these algorithms are easy
to use, requiring no choice of tuning parameters to maintain
their ascent property. We can extend the modal clustering idea
to the posterior density to label samples by constructing a
Bayesian EM algorithm suitable in many mixture models. If
the algorithm presented here is not suitable in a given Bayesian
mixture problem, it could be replaced with a gradient ascent
algorithm that is suitably tuned to provide monotonic increases
in the posterior.

Let us start by introducing an ascending algorithm to find the
local posterior mode of Bayesian mixtures. Define the latent
variable

Zij ¼
1; if the i th observation is from jth component;
0; otherwise:

�
Then the complete likelihood for (x, Z) is

Lðu; x;ZÞ ¼
Yn

i¼1

Ym
j¼1

½pj f ðxi; ljÞ�Zij ;

where Z ¼ {Zij, 1 # i # n, 1 # j # m}, and the complete
posterior distribution is

pðu;ZjxÞ ¼ 1

pðxÞpðuÞLðu; x;ZÞ;

where p(x) is the marginal density for x ¼ {x1, . . . , xn}.
Suppose that all the prior parameters are fixed and we are in

a setting such that we can use a Gibbs sampler to get the
MCMC samples (i.e., there exists a partition of u ¼ {u(1), . . . ,
u(p)} such that all the conditional complete posterior dis-
tributions {p(u(i) | . . .), 1 # i # p} are easily found), where u(i)

can be scalar or vector and | . . . denotes conditioning on all
other parameters and the latent variable Z. By combining the
ideas of ECM (Meng and Rubin 1993), a class of GEM algo-
rithm (Dempster, Laird, and Rubin 1977), and properties of a
Gibbs sampler, we propose the following algorithm to find the
posterior modes of Bayesian mixtures.

Algorithm 2: ECM Algorithm for Bayesian Mixtures
(ECM(BM)). Starting with the initial value of u, iterate the
following two steps until a fixed point is reached.

E-Step. Find the conditional expectation of the latent vari-
able Z—in other words, the classification probability for each
observation

pij ¼ EðZij j x; uÞ ¼
pj f ðxi; ljÞ

Sm
l¼1pl f ðxi; llÞ

:

M-Step. Update u by maximizing the conditional complete
posterior distribution p(u(i) | . . .), 1 # i # p sequentially with
the latent variable Zij replaced by the classification probability
pij. j

From the theory of ECM (Meng and Rubin 1993) and GEM
(Dempster, Laird, and Rubin 1977), we know that the posterior
distribution p(u) will increase after each iteration. Moreover, it
is clear that the algorithm has a natural equivalence property. If
u converges to u*, then us converges to us

� : This will mean that
if a modal cluster is formed by the algorithm, a fixed permu-
tation of its elements will also be a cluster that ascends to the
permuted mode.

2.3 Implementation Issues

One nice feature of PM(ALG) is that the algorithm does not
depend on any initial choice of labels, which can save much
computation time compared with other relabeling algorithms.
In addition, PM(ALG) is an online algorithm, which does not
require batch processing and thus reduces the amounts of
storage.

Notice that the PM(ALG) method does not require one to
compare m! permutations to find each st except for the initial
discovery of a minor mode. In our experience, most of the
samples will converge to one of the m! maximal modes. If mt is
one of the maximal modes (i.e., there exists st such that
mst

t ¼ û), the natural label of mt is st and it can be directly
found by ordering mt (based on any one-dimensional compo-
nent parameter such as a component mean) the same as the
reference mode û:

For example, for a univariate normal mixture, suppose the
reference maximal mode û is ordered by the component means,
so

û ¼ ðp̂1; . . . ; p̂m; m̂1; . . . ; m̂m; ŝ1; . . . ; ŝmÞ;

where m̂1 < m̂2 < � � � < m̂m: Suppose mt is one of the m! max-
imal modes and we want to find st such that mst

t ¼ û: If the
label s* is the one such that ms�

t is also ordered by the com-
ponent means m’s, then we have s*¼st. Hence, if mt is one of
the maximal modes, the labeling of mt will be as easy as the OC
labeling. This property makes PM(ALG) much faster, when m
is large, than other risk-based relabeling algorithms, which
require m! comparison in each iteration.

If mt is a minor mode, we use the distance criteria (2) to find
st such that the distance between mst

t and û is minimized.
Many other existing labeling methods can be also used to label
the minor modes. For example, similar to the KL algorithm, we
can also use the Kullback-Leibler divergence from the dis-
tribution on clusters based on the reference mode û; to the
distribution on clusters based on ms

t : Hence, the criteria (2) can
be replaced by
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st ¼ arg max
s

Xn

i¼1

Xm

j¼1

pijðûÞ logðpijðms
t ÞÞ ; ð3Þ

where pijðuÞ ¼ pj f ðxi; ljÞ=Sm
l¼1 pl f ðxi; llÞf g is the classi-

fication probability of xi from the jth component based on
parameter u. One nice feature of this criteria is its invariance to
the scale effect of parameters. Notice that both of the previous
two criteria ((2) and (3)) require m! comparisons to get the
label st for the minor mode mt.

2.4 HPD Labels and Labeling Credibility

In this section, we will describe one very attractive feature of
PM(ALG) based on the new concept of ‘‘HPD label.’’ This
leads to a new method to assess the quality of the labels that
have been assigned. To simplify the explanation, let us assume
that the number of components is two (i.e., m ¼ 2) and there is
only one permutation class of modes (i.e., maximal modes).

Suppose that the parameter space is the full product space V

(p’s in the simplex, l’s in cross-product space). Let us say that
a subset S of V is an identifiable subset if there are no
degenerate points in S and for every u 2 S, we have us ; S,
where s ¼ (2, 1). If we restrict the parameters to lie in an
identifiable subset S, then all the parameters have unique
labels. For any identifiable subset S, we can create an image set
by permutation: Ss ¼ {us : u 2 S}. The image set is also
identifiable.

Let us suppose that our goal is to build credible regions for
the parameters, for any fixed credibility level 1 � a, using
regions of HPD. Such credible regions have the theoretical
justification of being the smallest volume credible regions at a
fixed level. To be specific, let the regions have the form cc¼ {u :
p(u) $ c}, where c ¼ ca is chosen to give the target credibility
level. For a given mode û; we define ScðûÞ to be the maximal
connected subset of the HPD region cc that contains û: We will
call ScðûÞ the ‘‘modal region’’ defined by c and û: When
c ¼ pðûÞ; ScðûÞ is the single point fûg: As c decreases, the
size of ScðûÞ increases. Note also that Ss

c ðûÞ; the permutation
image of ScðûÞ; is automatically the maximal connected subset
that contains û

s
—in other words, Ss

c ðûÞ ¼ Scðû
sÞ: As long as c

is sufficiently large, the set cc will be the union of disjoint
identifiable sets ScðûÞ and Scðû

sÞ: Assume that we have
specified such a value of c. Then it is natural to use the iden-
tifiable (and hence well-labeled) set ScðûÞ to describe the HPD
region, because any other Scðû

sÞ is just the permuted (rela-
beled) image of ScðûÞ: In fact, if we view the problem
asymptotically in n, these identifiable sets will eventually be
disjoint for any c in accordance with the asymptotic identifi-
ability of the labels.

Because the parameters have unique labels in ScðûÞ; the
HPD region ScðûÞ gives a natural labeling to all u values it
contains. We will call these labels the ‘‘HPD labels,’’ and will
consider them to be the ideal labels. Note that not all points can
be given HPD labels, because at some value of c—say, c0—the
modal regions for û and û

s
intersect or they contain some

degenerate points. For c larger than c0, however, we can define
unique HPD labels. We will let a0 ¼ Pr(p(u) > c0) be the
posterior probability of the points with HPD labels, and will
call it the ‘‘labeling credibility.’’

Assuming that the HPD region ScðûÞ contains the single
mode û; if we start an ascending algorithm at u within this HPD
region, it necessarily climbs the posterior to û; and is so
labeled. (The only way to leave the set is for the algorithm to
decrease the posterior.) Hence, the PM(ALG) method will
assign the same labels to all the points of ScðûÞ and thus
PM(ALG) recovers all the ideal HPD labels, which is a primary
motivation and essentially unique benefit of labeling based on
an ascending algorithm. Specifically, if û is the reference
mode, then any point of HPD region ScðûÞ has the label with
identity permutation (1, 2) and any point of region Scðû

sÞ has
the label s�1 ¼ (2, 1).

If there are minor modes, the situation is somewhat more
complex. Now each minor mode also creates a locally identi-
fiable set that grows with index c shrinking. As c becomes
small enough, the HPD region around one minor mode might
begin to intersect with HPD regions from other minor or major
modes. If we always take c to be sufficiently large that there is a
single mode in the major modal regions, then the ALG always
identifies the ideal labels. If c is set low enough that there are
one or more minor modes in ScðûÞ; then it is possible that our
assignment method using a risk-based criterion does not agree
with the HPD region, which might cluster the minor modes
differently. (Although we would have liked for PM(ALG) to
agree with HPD even for minor modal clusters, doing so would
add considerable computational complexity to the problem.)

Let c* be the maximum posterior value among all the
degenerate points. We define the ‘‘upper labeling credibility’’
to be a* ¼ Pr(p(u) > c*). We will argue next that a* provides
an upper bound to, and a good approximation to, the labeling
credibility a0. As such, it is a measure of how difficult the
labeling problem is. It also indicates to us the level of arbi-
trariness involved in assigning labels to all sample points.
(Small a* implies that very few sample points will have HPD
labels.)

When c < c*, the modal region ScðûÞ will contain one or
more degenerate points and thus it is not identifiable. Hence,
c0 $ c* and the upper credibility level a* is an ‘‘upper bound’’
for a0, the proportion of points with ideal HPD labels. This
upper bound becomes the actual labeling credibility if ScðûÞ and
Scðû

sÞ first connect at a degenerate point, because when c > c*,
ScðûÞ and Scðû

sÞ are not connected and they do not contain any
degenerate points. Unfortunately, it is difficult to verify
whether this property holds in general, or even in a specific data
analysis. Yao (2007) provided some graphical checking
methods, and the empirical evidence was that the upper bound
a* was indeed the labeling credibility a0. We will therefore say
that sample points with posterior greater than c* are ‘‘likely’’
HPD labeled.

The value of c* and hence the upper credibility level a* can
be easily estimated based on the ECM(BM) algorithm. When
using ECM(BM), the updated point after each iteration from
the degenerate point will be also the degenerate point. So, the
c* value can be found by running the ECM(BM) algorithm
starting from several degenerate points and choosing the con-
verged degenerate mode with the largest posterior. In practice,
one can make use of the MLE of (m � 1)-component mixture
when choosing the starting points. For example, suppose m¼ 3
and ððp̂; 1� p̂Þ; ðl̂1; l̂2ÞÞ is the MLE of a two-component
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mixture. The parameter sets ððp̂; 1� p̂; 0Þ; ðl̂1; l̂2; l3ÞÞ;where
l3 can be any real value such as the one maximizing the prior
for l3 can be included as one of the initial values for the
ECM(BM) algorithm. Denote the estimate of c* by ĉ�: Then a*
can be estimated by the proportion of MCMC samples with
posterior larger than ĉ�:

2.5 The Classification MLE Method

From the asymptotic theory for the posterior distribution (see
Walker (1969) and Frühwirth-Schnatter (2006, Secs. 1.3, 2.4.3,
3.3), we know that when sample size is large, the ‘‘correctly’’
labeled MCMC samples should, approximately, follow the
normal distribution. Based on this property, we propose another
method to do labeling based on minimizing the following
negative lognormal likelihood over ð�u;S;sÞ :

Lð�u;S;sÞ ¼ N logðjSjÞ þ
XN

t¼1

ðust
t � �uÞT S�1ðust

t � �uÞ ð4Þ

where �u is the center value for the normal distribution, S is the
covariance structure, and s ¼ (s1, . . . , sN). This corresponds
to applying the classification MLE clustering method to the full
set of permuted u-values (see Symons (1981), McLachlan
(1982), and McLachlan and Basford (1988)). As we shall see,
this is a batch processing algorithm that comes close to
matching the likely HPD labels.

If we assume S is diagonal (i.e., all the parameters are
orthogonal), this labeling method is exactly the same as that of
Celeux (1998). We know that for the standard parameter-
ization, the parameters are not orthogonal. So here we use the
general covariance matrix S.

The algorithm to find labels by minimizing (4) is as follows.

Algorithm 3: Labeling by Normal Likelihood (NORMLH)
Starting with some initial values for s1, . . . , sN (setting them
based on an OC, for example), iterate the following two steps
until a fixed point is reached.

Step 1. Update �u and S by minimizing (4)

�u ¼ 1

N

XN

t¼1

ut
st ;

S ¼ 1

N

XN

t¼1

ðust
t � �uÞðust

t � �uÞT :

Step 2. For t ¼ 1, . . . , N, choose st by

st ¼ arg min
s
ðus

t � �uÞTS�1ðus
t � �uÞ :

In Step 2, after any change of st, we could also update �u and
S, thereby increasing the speed of convergence but increasing
complexity. Because in each step of the previous algorithm the
objective function (4) decreases, this algorithm must converge.
However, like other general relabeling algorithms, this algo-
rithm is only guaranteed to converge to a local minimum that
depends on the initial labels. To get better results, we might
choose a number of different starting labels.

The NORMLH method has a simple and nice explanation,
and runs much faster than the PM(ALG) method if m is not

large. As one referee pointed out, if m is too large or the
dimension of the data is large, this method could have
numerical problems resulting from the calculation of S�1. If
this problem occurs, one could add a penalty function to the
objective function. A penalty of the form l 3 Trace(S�1)
creates a ridge-type estimator for S.

The dissertation of Yao (2007) described two other related
labeling methods. Yao (2007) proposed to find the labels of the
MCMC samples along with the mean �u by minimizing the
determinant of the sample covariance matrix

Lð�u;sÞ ¼ det
1

N

XN

t¼1

ðust
t � �uÞðust

t � �uÞT
 !

; ð5Þ

where s1, . . . , sN and det(A) is the determinant of matrix A.
The main idea of this method is to find the labels by mini-
mizing the ellipsoidal volume of the labeled sample clusters.
Yao (2007) argued that NORMLH produces similar results to
the previous method but is much faster.

Without using the covariance S in Step 2, the s and �u found

by Algorithm 3 in fact minimize Lð�u;sÞ ¼ SN
t¼1ðust

t � �uÞT

ðust
t � �uÞ: This method is the K-means-type labeling method

introduced in the dissertation of Yao (2007). When u only
contains m parameters (one for each component)—say, the m
component means for one dimension data—this labeling
method will be exactly the same as the OC labeling. However,
unlike the OC labeling, this method can incorporate different
component parameters together and can be easily extended to
the multivariate case.

3. EXAMPLES

In this section, we will use two simulation examples and one
real dataset to compare our proposed two labeling methods
(PM(ALG) and NORMLH) with OC labeling and Stephens’
KL algorithm (KL). The OC method refers to ordering on the
mean parameters. For PM(ALG), we used ECM(BM) for the
ascent algorithm and we will refer to this particular modal
cluster labeling method as PM(ECM). We used the MLE and
20 equally spaced samples from the 20,000 burn-in samples as
the initial values to find the reference maximal mode. In all our
examples, we successfully found the maximal modes.

For comparison, we report the number of different labels for
each method that differed from PM(ECM). We also report the
newly defined upper labeling credibility level, which can
approximate the proportion of the HPD labels and measure
how difficult the labeling problem is.

All the computations were done in Matlab 7.0 using a per-
sonal desktop computer with Intel Core 2 Quad CPU 2.40 GHz.
It is known that the OC method is the fastest one and it takes no
more than several seconds in our examples. Hence, we only
report the runtimes for KL, NORMLH, and PM(ECM). Here
we have used PM(ECM) in batch mode so that we can deter-
mine its runtime in direct comparison with the others. Because
the runtime for the NORMLH and KL algorithms depends on
the number of starting points (i.e., the initial labels for all
samples), we only report the runtimes of NORMLH and KL
when using the PM(ECM) labels as the initial labels. (The real
runtimes for NORMLH and KL could be much longer. If one
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used 10 different initializations for the algorithm, it might take
about 10 times as long (generally longer than that because the
runtimes of NORMLH and KL depend on the quality of start
values).) Using these starts also ensures that the other methods
are as similar to PM(ECM) as possible.

3.1 Simulation Studies

Example 3.1. We generated 400 data points from
0.3N(0,1) þ 0.7N(0.5,2). Based on this dataset, we generated
20,000 MCMC samples (after initial burn-in) of component
means, component proportions, and the unequal component
variance. The MCMC samples are generated by Gibbs sampler
with the priors given by Phillips and Smith (1996) and
Richardson and Green (1997). That is to assume

p ; Dðd; dÞ;mj ; Nðj; k�1Þ;s�2
j ; Gða; bÞ; j ¼ 1; 2 ;

where D(�) is the Dirichlet distribution and G(a, b) is the
gamma distribution with mean a /b and variance a /b2. Fol-
lowing the suggestion of Richardson and Green (1997), we let
d ¼ 1, j equal the sample mean of the observations, k ¼ 1/R2,
and a¼ 2, where R is the range of the observations. Richardson
and Green (1997) introduced an additional hierarchical model
by allowing b to follow a gamma distribution to reduce the
influence of b on the posterior distribution of the number of
components. Here we fix all the parameters in the prior dis-
tribution like Phillips and Smith (1996) and set b ¼ R2/200.
Similar priors are used for the other two examples.

The upper labeling credibility level a* was 98.5%, and so
almost all the samples likely have the ideal HPD labels. In this
example, all the 20,000 samples, except for six, converged to
the maximal modes. The other six samples converged to the
same minor mode. Hence, almost all the samples can be labeled
directly by the converged maximal modes. The minor mode
was labeled by the distance criterion (2).

The runtimes for KL, NORMLH, and PM(ECM) were 66,
0.2, and 25 seconds, respectively. The total numbers of dif-
ferent labels between (OC, KL, NORMLH) and PM(ECM)
were 757, 212, and 0, respectively. On the subset above the
labeling credibility c*, the number of disagreements was 663,
203, and 0, respectively. (Note that NORMLH and PM(ECM)
had the same labels in this example. Using the PM(ECM)
labels as the initial values, NORMLH converged with just one
iteration. If using the OC labels as the initial values, NORMLH
converged in three iterations and the runtime was 3 seconds.)

Because there are only two components, we can easily use
some parameter plots to check where the labeling differences
occurred.F1 Figure 1 gives the plots of s1 � s2 versus p1 for
different labeling methods.F2 Figure 2 gives the plots of s1 � s2

versus m1 � m2. Note that the gray and black points represent
the two permuted images of the labeled parameter values. From
these plots, one can see that there are indeed relatively tight
clusters around each posterior mode, and that OC and KL did
not accurately recover these labels. The NORMLH and
PM(ECM) methods clustered the two groups more naturally.

Example 3.2. We generated 400 data points from the
eight-component normal mixture S8

j¼10:125Nðmj; 1Þ, where mj

¼ 3(j � 1). This is an example where, because of the constant

weight parameters and variance parameters, we would expect
the OC method to be very effective. The large number of
components, however, will make labeling computationally
difficult for relabeling algorithms. Based on this dataset, we
generated 5,000 MCMC samples of component means, com-
ponent proportions, and the equal component variance. (The
personal computer used for the simulation did not have enough
memory for the KL algorithm when we tried to label a large set
of 10,000 samples, largely because of the storage of classi-
fication probabilities. Stephens (2000) did provide some
alternative online versions for the KL algorithm.)

Figure 1. Plots of s1� s2 versus p1 for the four labeling methods in
Example 3.1. The black points represent one set of labels and the gray
points are the permuted samples. The star points are the posterior
modes.

Figure 2. Plots of s1 � s2 versus m1 � m2 for the four labeling
methods in Example 3.1.
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The upper labeling credibility level was 58%, so at least 42%
of the samples do not have ideal HPD labels. By our standards,
the labels on these points are somewhat arbitrary (i.e., there is
no natural/ideal way to label them). In this example, 95% of
samples converged to the maximal modes. The other 5% of
samples converged to four minor modes, three of which were
degenerate modes.

The total number of different labels between (OC, KL,
NORMLH) and PM(ECM) was 109, 365, and 142, respec-
tively. In this example, all four methods had identical labels on
the subset above the labeling credibility c*. Hence, all four
methods recovered the likely HPD labels well, and the labeling
differences occurred for non-HPD labels.

The runtimes for KL, NORMLH, and PM(ECM) were 7.86293

104, 3.4394 3 104, and 79 seconds, respectively. (The runtime
for KL and NORMLH is based on one initialization.) We can
see that PM(ECM) was much faster than the other two
methods because KL and NORMLH methods required one to
compare 8! ¼ 40,320 permutations in each iteration. From this
example, we can see that if the number of components is large,
PM(ECM) will be much faster than KL and NORMLH.

It is difficult to compare different labeling methods graphi-
cally when the number of components is large. Instead, we
provide the trace plots and the marginal density plots to illus-
trate the success of PM(ECM). (The OC, KL, and NORMLH
methods had similar visual results for those plots.) F3Figure 3
provides the trace plots for the original Gibbs samples and the
labeled samples by PM(ECM). F4Figure 4 provides the estimated
marginal posterior density plots for the original samples and
the labeled samples by PM(ECM). From these figures, we can
see that PM(ECM) successfully removed the label switching in
the raw output of the Gibbs sampler at a considerably lower
computational expense than all but OC.

3.2 Real Data Application

We consider the acidity dataset (Crawford et al. 1992;
Crawford 1994). The data are shown in F5Figure 5. The obser-
vations are the logarithms of an acidity index measured in a
sample of 155 lakes in north–central Wisconsin. This dataset
has been analyzed as a mixture of Gaussian distributions by
Crawford et al. (1992), Crawford (1994), and Richardson and

Figure 3. Trace plots of the Gibbs samples of component means for Example 3.2. (a) Original Gibbs samples. (b) Labeled samples by
PM(ECM).
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Green (1997). Based on the result of Richardson and Green
(1997), the posterior for three components is largest. Hence, we
fit this dataset by a three-component normal mixture. We
postprocessed the 20,000 Gibbs samples by the OC, KL,
NORMLH, and PM(ECM) labeling methods.

The upper labeling credibility level was 71%. In this
example, around 91% of the 20,000 samples converged to the
maximal modes. The other 9% of the samples converged to
four minor modes. The runtimes for KL, NORMLH, and
PM(ECM) were 41, 5, and 60 seconds, respectively. The total
numbers of different labels between (OC, KL, NORMLH) and
PM(ECM) were 103, 527, and 127, respectively. On the set of
samples with posterior probability more than c*, the number of

disagreements was 4, 105, and 9, respectively. Hence, both OC
and NORMLH, but not the KL algorithm, recovered the likely
HPD labels almost as well as PM(ECM) in this example.

Figure 6 F6shows the plots of s2 � s3 versus m2 � m3 and its
permutation image, between the second and third components,
for all the labeled samples. F7Figure 7 shows the similar plots but
only for the labeled samples with posterior larger than c*. Note
that, unlike the two-component case, the points in the plots are
not the same for all the methods. Whenever the labeling dif-
ference for one sample involves the label of the first compo-
nent, the two permuted points, between the second and third
components, in the plots will be different for different methods.
(For example, supposing ðm�1;m�2;m�3;s�1;s�2;s�3Þ is the labeled

Figure 4. Plots of estimated marginal posterior densities of component means for Example 3.2 based on original Gibbs samples (a) and labeled
samples by PM(ECM) (b).
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sample used by one method and ðm�3;m�2;m�1;s�3;s�2;s�1Þ is the
corresponding labeled sample used by another method, the two
permuted points, between the second and third components, in
the plots will be ðm�2 � m�3;s

�
2 � s�3Þ and ðm�3 � m�2;s

�
3 � s�2Þ

for the first method, and ðm�2 � m�1;s
�
2 � s�1Þ and

ðm�1 � m�2;s
�
1 � s�2Þ for the second method.) From Figures 6

and 7, one can see that KL did not cluster the parameter points
as well as the other three methods. Based on Figure 7, one can
also see that all the methods, except for the KL algorithm,
recovered the likely HPD labels pretty well.

4. DISCUSSION

In this article, we proposed two labeling methods: PM(ALG)
and NORMLH. The PM(ALG) method uses each MCMC
sample as the starting point for an ascending algorithm (such as
the ECM(BM) algorithm introduced in Section 2.2) and assigns
the label based on the mode to which the algorithm converges.
Using one of the maximal modes as the reference mode, all
other permuted maximal modes have clear labels. For the
minor modes, we proposed to label them by comparing the

minor modes with the reference mode based on the Euclidean
distance (2) or the Kullback-Leibler divergence criteria (3).

If the converged mode is a degenerate mode, meaning it
corresponds to a mixture with at least one component less than
the fitted model, then, as a referee pointed out, there really is no
sensible labeling by PM(ALG) (or any other labeling method).
We do not find this disturbing, because all sample points that
converge to a degenerate mode do not have HPD labels, and so
there is no single natural way to label them.

Because of the ascending property of ALG, the PM(ALG)
method will reproduce the HPD labels in major modal groups.
Hence, the PM(ALG) method creates a natural and intuitive
partition of the parameter space into labeled regions.

There are several other nice properties of the PM(ALG)
method. First, unlike a typical relabeling algorithm, the
PM(ALG) method gives an answer that does not depend on a
set of initial labels, the choice of which can change the label-
ing. Second, the PM(ALG) method is an online algorithm and it
can do labeling along with the MCMC sampling process. Hence,
the storage requirements are reduced. Finally, the PM(ALG)
method does not require one to compare m! permutations when
doing labeling except for the minor modes. This property can
make PM(ALG) much faster than some other labeling methods
when m is large, as shown in Example 2 in Section 3.

There are also some possible ways to improve further the
computation speed of PM(ALG). One way is to find a faster
ascending algorithm to find the local posterior mode. Another
possibility, when used in batch mode, is first to cluster the
samples by a method like K-means with large number of
clusters K. Then, by assuming that the samples within each
cluster have the same labels, we only need to find one con-
verged mode for each cluster.

If a hierarchical Bayesian model is used, the marginal prior
and the posterior distribution of u contains the integration with
respect to the random prior parameters. If there is a closed form
for the marginal prior and hence the posterior distribution, we
can still use the ECM(BM) to find the posterior modes. How-
ever, if there is no closed form for the posterior distribution, the
ECM(BM) cannot be used directly. One could, however, use
the ECM(BM) on the full posterior including hyperparameters.

Figure 5. Histogram of acidity data. The number of bins used is 20.

Figure 6. Plots of s2 � s3 versus m2 � m3 for the acidity data. The
black points represent one set of labels and the gray points are the
permuted samples between the second and the third components. The
star points are the posterior modes.

Figure 7. Plots of s2 � s3 versus m2 � m3 for the samples with
posterior higher than c* for the acidity data.
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A second possibility, provided that the likelihood function
dominates the prior distribution (the prior is relatively flat or
the sample size is large), is to use the likelihood function to
approximate the posterior. Then one could use the usual mix-
ture EM algorithm to assign the labels based on the modes of
the likelihood itself.

Our second proposed labeling method NORMLH is often
computationally easy and fast when the number of components
is not large. However this method might be nearly as slow as
the KL algorithm when the number of components is large. In
our examples, it performed somewhat better than the alter-
natives at recreating the PM(ECM) labels.

Finally, we introduced a new reliability measure called the
‘‘labeling credibility level’’ and an easy-to-compute approx-
imation called the ‘‘upper credibility level.’’ This approximates
the proportion of the samples that will have ideal HPD labels and
measures how difficult the labeling problem is. It is estimated by
the proportion of the samples with posterior larger than the
maximum posterior of the degenerate modes. It can be used, as
in the examples, to examine the clustering of the HPD regions.

[Received December 2007. Revised December 2008.]

REFERENCES
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